受検番号	
------	--

合計

2021年度 専攻科入学者選抜 (一般選抜) 筆記試験問題

数学

全4枚 (表紙を含む)

全コース共通

<注意事項>

全ての試験用紙に受検番号を記入してください

2021年度 専攻科入学者選抜 筆記試験 数学 (1枚目)

受検番号	

- [1]. 関数 $y = (x+2)e^{-x}$ について、以下の問いに答えよ.
 - (1) 増減と凹凸を調べ、極値と変曲点を求めよ.

小 計

(2) 極限値 $\lim_{x\to\infty}(x+2)e^{-x}$ および $\lim_{x\to-\infty}(x+2)e^{-x}$ を求め、グラフの概形を描け.

- [2]. 関数 f(x,y) = x + 2y について、以下の問いに答えよ.
 - (1) $g(x,y)=x^2+y^2-5$ とするとき、条件 g(x,y)=0 のもとで、f(x,y) の極値をとりうる点が満たす方程式をかけ、

小 計

(2) 条件 g(x,y)=0 のもとで,f(x,y) の最大値と最小値を求めよ.ただし,この条件のもとで f(x,y) は最大値と最小値を必ず持つとする.

[3]. 次の2重積分の値を求めよ.

$$\iint_D x \ dx \ dy, \ D = \left\{ (x,y) \, | \, y \geqq x^2, \ x+y \leqq 2 \right\}$$

小 計

2021年度 専攻科入学者選抜 筆記試験 数学 (2枚目)

受検番号

[4].	x を独立変数とする微分方程式 $y'-2y=0$ の一般解を求めよ.	小	計
[5].	x を独立変数とする微分方程式 $y''-4y'+5y=5x+6\cdots(*)$ について、以下の問いに答えよ.	小	計
	(1) (*) の補助方程式 $y'' - 4y' + 5y = 0$ の一般解を求めよ.		
	(2) 微分方程式 (*) の特殊解を 1 つ求めよ.		
	(3) 微分方程式 (*) の一般解を求めよ.		
[6].	x を独立変数とする微分方程式 $xy''+(1-x)y'+2y=0$ の解で, 次の条件 (a) , (b) を満たすものを求めよ.	小	計
-	(a) y は x の 2 次式. (b) $x = 1$ のとき $y = -1$.		

受検番号	

[7]. xy 平面上で,直線 ℓ : $y=\sqrt{3}x$ と x 軸に関する対称変換の表現行列をそれぞれ A と J とし,直線 ℓ と x 軸の作る角を α $\left(0<\alpha<\frac{\pi}{2}\right)$ とする. さらに原点を中心とする角 α の回転の表現行列を P とするとき, $A=PJP^{-1}$ が成り立つ. 以下の問いに答えよ.

小 計

(1) x 軸に関する対称変換の表現行列 J を求めよ.

(2) 行列 J の固有値は 1 と -1 であり, $m{e}_1=\left(egin{array}{c}1\\0\end{array}
ight)$, $m{e}_2=\left(egin{array}{c}0\\1\end{array}
ight)$ はそれぞれの固有値に対する固有ベクトルであることを確かめよ.

(3) 直線 ℓ と x 軸の作る角 α $\left(0<\alpha<\frac{\pi}{2}\right)$ を求め、原点を中心とする角 α の回転の表現行列 P を求めよ.

(4) 直線 ℓ に関する対称変換の表現行列 A を求めよ.

(5) 行列 A の固有値は 1 と -1 であり、 $p_1=Pe_1,\,p_2=Pe_2$ はそれぞれの固有値に対する固有ベクトルであることを確かめよ.